На правах рукописи

Вербицкий Егор Владимирович

σ^н-АДДУКТЫ СОЛЕЙ 5-R-2,3-ДИЦИАНО-1-ЭТИЛПИРАЗИНИЯ: СТРОЕНИЕ И СВОЙСТВА

02.00.03 – органическая химия

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени

кандидата химических наук

Екатеринбург – 2008

Работа выполнена в Институте органического синтеза им. И.Я. Постовского Уральского отделения Российской академии наук.

НАУЧНЫЙ РУКОВОДИТЕЛЬ:	академик РАН
	Чарушин Валерий Николаевич
ОФИЦИАЛЬНЫЕ ОППОНЕНТЫ:	доктор химических наук, профессор
	Мамедов Вахид Абдулла-оглы
	Институт органической и физической химии
	им. А.Е.Арбузова КНЦ РАН, г. Казань
	доктор химических наук, профессор
	Бакулев Василий Алексеевич
	ГОУ ВПО УГТУ-УПИ, г. Екатеринбург
ВЕДУШАЯ ОРГАНИЗАЦИЯ:	Институт органической химии
,, ,	им. Н.Д. Зелинского Российской академии
	наук, г. Москва

Защита состоится «6» октября 2008 в 15⁰⁰ на заседании диссертационного совета Д.212.285.08 в ГОУ ВПО "Уральский государственный технический университет-УПИ имени первого Президента России Б.Н. Ельцина" по адресу: Екатеринбург, ул. Мира, 28, третий учебный корпус УГТУ-УПИ, аудитория Х-420.

Ваш отзыв в одном экземпляре, заверенный гербовой печатью, просим направлять по адресу: 620002, г. Екатеринбург, К-2, ГОУ ВПО «Уральский государственный технический университет – УПИ имени первого Президента России Б.Н. Ельцина», ученому секретарю совета института, тел. (343) 375-45-74, факс (343) 374-04-58. Е-mail: <u>orgchem@mail.ustu.ru</u>.

С диссертацией можно ознакомиться в библиотеке УГТУ-УПИ. Автореферат разослан 6 сентября 2008 г.

Учёный секретарь диссертационного совета, Поспелова Т.А. кандидат химических наук, с.н.с.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. В последние годы активно развиваются методы модификации π дефицитных азаароматических систем, в частности 1,4-диазинов, включающие нуклеофильную атаку на Csp^2 -H фрагмент или два соседних атома углерода в ароматическом кольце. Использование $A_N^H - A_N^H$, $S_N^H - S_N^H$ и других тандемных реакций позволяет получить широкий круг конденсированных азагетероциклов, причем промежуточными соединениями в таких реакциях являются σ^H -аддукты, устойчивость которых меняется в широких пределах. Известно, что наличие акцепторных группировок в азинах придает повышенную устойчивость σ^H -аддуктам, однако до настоящего времени химические свойства аддуктов глубоко не изучались, а основными направлениями их превращений являлись диссоциация или ароматизация по викариозному и окислительному механизмам. Такой весьма ограниченный круг реакций не отражает синтетический потенциал химии σ^H -аддуктов, что делает целесообразным поиск новых путей их модификации с целью создания оригинальных структур, труднодоступных в рамках известных синтетических подходов.

Данная работа посвящена развитию химии σ^{H} -аддуктов и направлена на изучение неокислительных трансформаций σ^{H} -аддуктов, получаемых из 2,3-дицианопиразиниевых солей под действием С-, О-, N-, S- и P-нуклеофилов. Она является логическим продолжением фундаментальных исследований в области химии 1,4-диазиниевых и 1,2,4-триазиниевых солей, выполненных ранее в Институте органического синтеза им. И.Я. Постовского УрО РАН, а также в Уральском государственном техническом университете.

Цель работы. Развитие химии σ^{H} -аддуктов, получаемых взаимодействием солей 5-(гет)арил-2,3-дициано-1-этилпиразиния с различными по своей природе нуклеофилами, исследование стереохимических особенностей их образования, пространственной структуры, анализ данных РСА, ЯМР и других физических методов, а также оценка возможности их участия в дальнейших химических превращениях.

Научная новизна. Системно исследованы свойства σ^{H} -аддуктов солей, образуемых в результате взаимодействия солей 5-R-2,3-дициано-1-этилпиразиния (R= фенил-, 4-фтор-фенил-, 3-тиенил-, 3-бензо[*b*]тиенил-) с С-, О-, N-, S- и P-нуклеофилами; впервые получены данные PCA для σ^{H} -аддуктов пиразинового ряда; определены стереохимические особенности реакций их образования. Установлена диссоциативная схема взаимодействия алкоксиаддуктов с CH-активными соединениями в кислой среде. Изучены особенности превращений С-аддуктов под действием N,N'- и N,O-динуклеофилов, а также О- и C-аддуктов с арилацетиленами; предложены химизмы данных реакций. Обнаружена реакция C-С сочетания ради-

Выражаю искреннюю благодарность в.н.с., к.х.н. Русинову Геннадию Леонидовичу за постоянное внимание, ценные советы и консультации, помощь, содействие и активное участие в работе.

кальных интермедиатов, генерируемых из солей 5-R-2,3-дициано-1-этилпиразиния, с непредельными соединениями.

Практическая значимость работы. Обнаружены новые химические реакции с участием σ^{H} -аддуктов; показана возможность использования их синтетического потенциала для получения производных ряда гетеросистем: пиразино[2,3-*c*]-пиридазинов, триазациклопента[*a*]инденов, пирроло[1,2-*a*]пиразинов, тетраазафенантрена и тетраазабензо-[*b*]флуорена. Получен ряд веществ, обладающих противоопухолевой активностью.

Апробация работы и публикации. По теме диссертации опубликовано 5 статей. Материалы работы представлялись на Международной конференции по органической химии -International Symposium on Advanced Science in Organic Chemistry (ASOC-2006) (Судак, 2006), конференциях молодых ученых по органической химии (Казань, 2005; Москва, 2006; Уфа, 2007), III Международной конференции-школе «Масс-спектрометрия в химической физике, биофизике и экологии» (Звенигород, 2007), XVIII Менделеевском съезде по общей и прикладной химии (Москва, 2007), Международная конференция по органической химии «Химия соединений с кратными углерод-углеродными связями» (Санкт-Петербург, 2008).

Структура и объём диссертации. Диссертационная работа состоит из введения, литературного обзора, обсуждения результатов, экспериментальной части, выводов, списка литературы и приложений. Работа изложена на 142 страницах текста, содержит 22 таблицы, 27 рисунков. Список литературы включает в себя 155 ссылок на публикации отечественных и зарубежных авторов.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

1. Получение солей 5-(гет)арилзамещенных 2,3-дицианопиразинов

Поскольку цианогруппы снижают основность пиразинового цикла, для получения пиразиниевых солей **2a-d** путем кватернизации пиразинов **1a-d** в качестве алкилирующего агента использовали тетрафторборат триэтилоксония в сухом CHCl₃ при комнатной температуре.

Рис. 1. Геометрия молекулы 2b

Выражаю искреннюю благодарность к.х.н. Слепухину Павлу Александровичу за выполнение РСА, постоянное внимание, ценные советы и помощь в работе.

Строение соединений **2а-d** подтверждено данными РСА на примере соли **2b** (рис. 1). Образование изомеров, а именно солей 6-(гет)арил-2,3-дицино-1-этилпиразиния не зафиксировано (спектры ЯМР ¹Н).

1.1. Электрохимическое исследование катионов 5-(гет)арил-2,3-дициано-

1-этилпиразиния

Для количественной оценки электрофильности солей 2,3-дицианопиразиния **2a-d** проведено их электрохимическое исследование. Методом циклической вольтамперометрии определены потенциалы восстановления (**φ**) солей **2a,c** (табл. 1), лежащие в области -0.26 ÷ -0.30 В. Для сравнения потенциал восстановления йодида 3-(3-тиенил)-1-метилхиноксалиния составляет -0.4 В, что свидетельствует о повышенной электрофильности солей 2,3-дицианопиразиния.

Соединение	Структура	Потенциал восстановления, В
2a	NC N NC N H ₃ C BF ₄	$φ_1 ≈ -0.30 ÷ -0.28$ $φ_2 ≈ +0.14 ÷ +0.16$
2c	NC N BF ₄	$\phi_1 \approx -0.28 \div -0.26$ $\phi_2 \approx +0.14 \div +0.15$

Табл. 1. Данные циклической вольтамперометрии (платиновый дисковый электрод, концентрация солей: 5×10⁻⁴ М.)

2. σ^H-Аддукты 5-(гет)арилзамещенных 2,3-дицианопиразинов

2.1. Аддукты с О-нуклеофилами

Исследованы физико-химические свойства аддуктов, образуемых в реакциях четвертичных солей N-алкилпиразиния **2a,b** с O-нуклеофилами. Соль **2a** реагирует со спиртами в присутствии триэтиламина при комнатной температуре, давая сравнительно стабильные 6алкокси-5-фенил-1-этил-1,6-дигидропиразин-2,3-дикарбонитрилы (**3a,b**), структура которых доказана методом ЯМР ¹Н, а также РСА на примере кристаллов **3a** (рис. 2).

Рис. 2. Геометрия молекулы За

Аналогичным образом, при взаимодействии солей 2a,b с водой в присутствии Na₂CO₃ происходит образование стабильных 5-арил-6-гидрокси-1-этил-1,6-дигидропиразин-2,3-дикарбонитрилов (**4a.b**), что подтверждается наличием в спектрах ЯМР ¹Н характерного дублета между протоном при С(6) и группой-ОН с КССВ *J*≈ 8 Гц, а также кристаллографическими данными для моногидрата 4а.

Установлено, что тетрафторбораты 5-арил-2,3-дициано-1-этил-пиразиния 2а, в при комнатной температуре гладко реагируют с оксимом N-оксил-2,2,6,6-тетраметилпиперидин-4-она 5 с образованием стабильных о^H-аддуктов **6а,b** по положению С(6). Структура соединения ба доказана методом РСА (рис. 3).

Рис. 3. Геометрия молекулы 6а

Соединения 6а, в исследованы методом ЭПР-спектроскопии. Исходные поликристаллы **6а,b** дают одиночную линию ЭПР с шириной $\Delta B = 16.5$ мТл и g= 2.0061, а в хлороформном растворе спектры полностью разрешаются и для обоих соединений 6а, в наблюдаются три линии, как показано на рисунке 5.

Рис. 4. ЭПР спектр раствора соединения **6а** в CHCl₃ при T = 293KПараметры спинового состояния в σ^{H} -аддуктах **6а,b** (g= 2.0061, A= 14.42 Гс) близки к соответствующим параметрам для нитроксильного радикала 5, на основании чего был сделан

вывод, что периферийная молекулярная структура не влияет на распределение спиновой плотности.

Отличительной особенностью спектров ЯМР ¹Н (табл. 2) О-аддуктов является наличие дублета квартетов из-за неэквивалентности протонов группы NCH_2CH_3 при диастереотопном атоме азота N(1), что, по всей вероятности, является следствием конформационной заторможенности этильной группы при N(1), вызванной объемными заместителей при C(2) и C(6).

Табл. 2. Химические сдвиги протонов N-этильной группы и КССВ в спектрах ЯМР ¹Н О-аддуктов **3а,b** и **4а,b**

Соед.	Растворитель	-N-C-CH ₃ H ^B				NCH	2 -<u>CH</u>3
		δ, м.д.	δ, м.д.	² <i>J</i> , Гц	³ J, Гц	δ, м.д.	³ Ј, Гц
3 a	$(CD_3)_2SO$	3.85	3.90	14.4	7.2	1.28	7.2
3b	CD ₃ CN	3.79	3.86	14.6	7.3	1.2.9	7.3
4 a	$(CD_3)_2SO$	3.72	3.82	14.4	7.2	1.37	7.2
4b	$(CD_3)_2SO$	3.71	3.82	14.4	7.2	1.37	7.2

2.2. Аддукты с С-нуклеофилами

Реакция солей **2а-d** с енолятами 1,3-дикарбонильных соединений протекает по незамещенному C(6) положению гетероцикла с образованием C-аддуктов **7-9**, что подтверждается наличием в спектрах ЯМР ¹Н соединений **8а-d** и **9а-d** дублетов с вицинальными КССВ J= 9.2-9.6 Гц, а также данными РСА соединения **8с** (рис. 5).

a: Ar= Ph; b= 4-F-Ph; c: Ar= 3-тиенил; d: Ar= 3-бензо[b]тиенил.

В результате присоединении к солям **2а-d** этилового эфира ацетоуксусной кислоты в спектрах ЯМР ¹Н аддуктов **9а-d** фиксируются сигналы двух диастереомеров, отличающихся конфигурацией C(экзо) и C(6) хиральных центров, и их соотношение близко к 1:1. Образование диастереомеров обусловлено появлением нового асимметрического центра, которым является атом углерода CH-активного соединения после образования связи C–C с пиразиновым ядром. В результате флэш-хроматографии смесь стереоизомеров была обогащена сначала до соотношения 9:1 ÷ 11:1, а затем мажорные (S,R / R,S) стереоизомеры **9а,b**, были выделены в чистом виде и охарактеризованы PCA (рис. 6).

Рис. 5. Геометрия молекулы 8с

Рис. 6. Геометрия молекулы 9b

При использовании в качестве С-нуклеофилов ариламинов и индолов в реакциях с солями **2a,c,d** получены стабильные С-аддукты **10a,c,d** и **11**. Индол присоединяется к солям **2a,c,d** положением C(3'), что подтверждается наличием вицинальной КССВ между протонами NH(1') и H(2') индольного фрагмента в спектрах ЯМР ¹Н соединений **10a,c** в ДМСО-d₆, а N,N-диметиланилин образует С-аддукт **11** по *пара*-положению арильного заместителя.

Рис. 7. Геометрия молекулы 10d

Строение соединения **10с** подтверждено данными спектроскопии ЯМР ¹Н и ¹³С. Полное отнесение сигналов протонов и углеродов выполнено с помощью двумерной спектроскопии HSQC/HMBC. Получены также данные PCA для аддукта **10d** (рис. 7).

Аналогичные результаты удалось получить при использовании в качестве Снуклеофилов производных 4-аминоглутаминовой кислоты 12 и 13, имеющими в качестве одного из заместителей остаток 2-метилиндола или N-метиланилина. В результате реакции с солями 2а,с получены аддукты 14 и 15а,с в виде смеси двух диастереомеров (табл. 3).

Попытки хроматогрфического разделения полученных смесей на индивидуальные диастереомеры оказались неудачными из-за близости значений R_f обоих компонентов смесей (табл. 3). Однако в случае соединения **14** удалось выделить в чистом виде с выходом 14% один из двух диастереомеров (+)-**14A**, для которого был определен угол оптического вращения [α]_D²⁰= +628.7 (C= 0.3 в CHCl₃).

Табл. 3. С-Аддукты солей 2,3-дициано-1-этилпиразиния с производными 4-аминоглутаминовой кислоты

Соет	Отношение R _f (A)/R _f (B) для двух диастереомеров	Данные ВЭЖХ для продук	стов (254 нм)
по ТСХ (этилацетат гексан, 1:1)		Элюент	Соотношение диастеромеров
14	0.74 / 0.65	гексан – 2-пропанол, 8:1	57.4 / 42.6
15a	0.76 / 0.62	гексан – 2-пропанол, 10:1	50.3 / 49.7
15c	0.77 / 0.60	гексан – 2-пропанол, 10:1	47.1 / 52.9

2.3. Аддукты с N- и S-нуклеофилами

Исследованы реакции четвертичных солей N-этилпиразиния 2 с N- и S-нуклеофилами.

Соли 5-R-2,3-дициано-1-этилпиразиния **2а,с** дают с первичными (*н*-гептиламин и *н*октиламин) и вторичными (морфолин и пиперидин) аминами при 20 °С моноаддукты по положению C(6) пиразинового цикла, о чем можно судить по отсутствию в спектрах ЯМР ¹H сигнала H(6) в ароматической области и наличию сигнала протона при sp^3 -углероде в области 5.50-5.60 м.д., однако выделить индивидуальные N-аддукты не удалось.

В реакциях солей **2а,с** с S-нуклеофилами выделены в индивидуальном виде S-аддукты с бензилмеркаптаном **16а,с** и тиогликолевой кислотой **17**. Необходимо отметить, что невысокий выход (23%) S-аддукта **17** обусловлен обратимостью реакции, в ходе которой было выделено 54% исходной соли **2с**.

2.4. Аддукты с Р-нуклеофилами

В качестве Р-нуклеофилов были использованы диэтил- и дифенилфосфонаты (**18a,b**). В их реакциях с тетрафторборатами 5-(гет)арил-2,3-дициано-1-этилпиразиния **2a,c** в мягких условиях (CH₃CN, 20 °C) образуются стабильные Р-аддукты по положению C(6) **19а,c** и **20а,c**, структура которых доказана методом РСА на примере соединения **19c** (рис. 8).

Рис. 8. Геометрия молекулы 19с

В отличие от О- и С-аддуктов в спектрах ЯМР ¹Н Р-аддуктов наблюдается сложный мультиплетный сигнал метиленовых протонов NEt-группы, что обусловлено не только их неэквивалентностью, но и наличием КССВ с атомом фосфора. По этой же причине синглет протона при С(6), характерный для О- и С-аддуктов, в случае Р-аддуктов трансформируется в дублет с ${}^{2}J$ = 12.8–14.2 Гц (табл. 4).

Табл. 4. Химические сдвиги H(6) и КССВ в спектрах ЯМР ¹Н Р-аддуктов **19а,с** и **20а,с** в CDCl₃

Соодинонно	H(6)			
Соединение	δ, м.д.	² <i>J</i> , Гц		
19a	5.17	14.2		
19c	4.97	13.6		
20a	5.57	13.4		
20c	5.37	12.8		

2.5. Взаимодействие солей 5-(гет)арил-2,3-дициано-1-этилпиразиния с йодидом натрия

Реакции четвертичных солей N-этилпиразиния **2а,с** с йодидом натрия проводили в мягких условиях (20° C, CH₃CN). В результате восстановительной димеризации получены производные 3,3'-ди(гет)арил-1,1'-диэтил-1,2,1',2'-тетрагидро-[2,2']-бипиразинил-5,6,5',6'-тетракарбонитрилов (**22а,с**).

Рис. 9. Геометрия димера 22а

Строение димеров **22а,с** доказано данными ЯМР ¹Н спектроскопии с учетом характерных сигналов протонов при sp^3 -углеродах С(2) и С(2') в области 5.6-5.8 м.д., а также методом РСАсоединения **22а** (рис. 9).

Процесс протекает как одноэлектронное восстановление катионов пиразиния до радикалов **21а,с** с последующей их рекомбинацией в димерные продукты **22а,с**. С целью перехвата промежуточных радикальных частиц проведены реакции с фенилацетиленом, в результате которых получены 1,2-дигидропиразины **23а,с** (табл. 5). Схема реакции включает присоединение радикалов **21а,с** к терминальному углероду фенилацетилена с последующей стабилизацией полученного радикала путем присоединения йода.

a: Ar= Ph; c: Ar= 3-тиенил.

Таблица 5. Выходы соединений 22а,с и 23а,с и соотношение их Е-/Z-изомеров

Исходная соль	Продукты реакции Выход, %	Соотношение <i>E- / Z-</i> изомеров в реакционной смеси по данным ЯМР ¹ Н
2a	E-23a : Z-23a : 22a 29 : 14 : 18	2:1
2c	E-23c : Z-23c : 22c 19 : 10 : 55	2:1

Полученные С-аддукты **23а,с** являются смесями *E-/Z*-изомеров. Методом препаративной ВЭЖХ каждый из изомеров **23а,с** выделен в индивидуальном виде и идентифицирован методами ЯМР ¹Н спектроскопии и РСА на примере соединений *E-***23с** (рис. 10) и *Z-***23с** (рис. 11).

Рис. 10. Геометрия молекулы Е-23с

Рис. 11. Геометрия молекулы Z-23с

2.6. Исследование энантиомерного состава моно-о^H-аддуктов

Аддукты с О-, С-, N-, S- и Р-нуклеофилами являются смесями двух энантиомеров.

NuH = O-, C-,N-, S- и P- нуклеофилы

С целью изучения энантиомерного состава полученных 1,2-дигидропиразинов в работе предпринята попытка их разделения на индивидуальные энантиомеры методом ВЭЖХ на хроматографических колонках с хиральными сорбентами – Chiralcel OD-H и Chiralpak AD. В качестве объектов хроматографического исследования были выбраны С-аддукты **8b,c**, а также О-аддукт **6a**, несущий нитроксильный радикал. Результаты ВЭЖХ исследования представленные в таблице 6 показывают, что энантиомеры образуются примерно в равных соотношениях.

Соединение	Тип колонки с хиральным сорбентом	Элюент	Время удержи- вания первого энантиомера (т ₁), мин	Время удержи- вания второго энантиомера (т ₂), мин	Соотношение энантиомеров
6a	Chiralpak AD	Гексан- пропанол-2, 20:1	15.8	17.0	48.2 : 51.8
8b	Chiralcel OD-H	Гексан- пропанол-2, 10:1	26.7	34.6	44.7 : 55.3
8b	Chiralpak AD	Гексан- пропанол-2, 10:1	13.2	13.2	-
8c	Chiralcel OD-H	Гексан- пропанол-2, 8:1	31.6	34.3	42.0 : 58.0

Табл. 6. Данные хроматографического анализа соединений ба и 8b,с методом ВЖЭХ

2.7. Физические характеристики σ^H-аддуктов солей 5-(гет)арил-2,3-дициано-1-этилпиразиния

С целью качественной оценки стабильности полученных σ^{H} -аддуктов проведен анализ данных РСА для О-, С- и Р-аддуктов, а именно сравнение длин связей *sp*³-углерод – элемент,

которые образуются в результате нуклеофильного присоединения по незамещенному положению пиразинового цикла, со стандартными длинами связей. Длины связей sp^3 -углерод элемент в σ^{H} -аддуктах близки к стандартным и существенных отклонений нет, что свидетельствует о прочности ковалентных связей и стабильности соответствующих 1,2-дигидропиразинов вследствие отсутствия напряжений в их структуре. Еще один аргумент в пользу сравнительно высокой устойчивости О-, С- и Р- аддуктов солей 5-(гет)арил-2,3-дициано-1этилпиразиния получен в результате анализа их ЯМР спектров. Во-первых, в спектрах ЯМР ¹Н различных типов аддуктов нет сигналов в области 9.54÷9.75 м.д., характерных для ароматического протона H(6) солей 5-(гет)арил-2,3-дициано-1-этилпиразиния **2а-d**, что говорит об отсутствии диссоциации σ^{H} -аддуктов в растворах. Во-вторых, о стабильности σ^{H} -аддуктов свидетельствует отсутствие изменений в ЯМР спектрах их растворов в течение длительного времени (до 30 дней).

Структура	Соединение	Заместители Растворитель Аг R		Растворитель	Химический сдвиг С(sp ³) Н	Химический сдвиг
Аддукта				С(<i>sp</i>)– <u>п</u> , м.д.	<u>С(<i>sp</i>³)</u> , м.д.	
NC N Ar	4a	Ph	Н	$(CD_3)_2SO - {}^1H$ $CD_3CN - {}^{13}C$	6.24	73.28
	3 a	Ph	Me	$(CD_3)_2SO$	6.41	-
Ét	3b	Ph	Et	CD ₃ CN	6.12	79.88
NC N Ar	P.c.	Ph	- (CH ₂) ₆ CH ₃	CD ₃ CN	5.60	-
NC `N` \$`N` H Et	P.c.	3-тиенил	- (CH ₂) ₇ CH ₃	CD ₃ CN	5.52	-
NCAr	P.c.	Ph	$X = CH_2$	CD ₃ CN	5.59	-
	P.c.	3-тиенил	X= O	CD ₃ CN	5.53	-
NC N Ar	16a	Ph	-CH ₂ Ph	CDCl ₃	5.87	-
	16c	3-тиенил	-CH ₂ Ph	CDCl ₃	5.78	59.84
NC N S S H Et	17	3-тиенил	- CH ₂ COOH	CD ₃ CN	6.36	-
	8 a	Ph	Me	$(CD_3)_2SO$	5.85	-
NC N Ar	8b	4-F-Ph	Me	CDCl ₃	5.76	-
	8c	3-тиенил	Me	$CD_3CN - {}^{1}H CDCl_3 - {}^{13}C$	5.65	53.83
EtO	9a	Ph	OEt	CDCl ₃	5.78* (5.76)	-
we	9b	4-F-Ph	OEt	CDCl ₃	5.74* (5.71)	-
	9c	3-тиенил	OEt	CD ₃ CN	5.66* (5.63)	-
NC N Ar NC N H Et N H	10a	Ph	-	(CD ₃) ₂ SO	6.59	-
	10c	3-тиенил	-	(CD ₃) ₂ SO	6.46	50.64
NC N Ar	19a	Ph	Et	CDCl ₃	5.17	53.07
	19c	3-тиенил	Et	CDCl ₃	4.97	54.29
	20a	Ph	Ph	CDCl ₃	5.57	53.60
Et ÓR	20c	3-тиенил	Ph	CDCl ₃	5.37	-

Табл. 7. Химические сдвиги протона и sp^3 -углерода в спектрах ЯМР ¹Н и ¹³С

Р.с. – реакционная смесь.

Кроме того, в результате анализа ЯМР ¹Н и ¹³С спектров Р-аддуктов в сравнении с данными для О-, С-, а также N- и S-аддуктов солей 5-(гет)арил-2,3-дициано-1-этилпиразиния установлено, что химические сдвиги sp^3 -углерода и связанного с ним протона отвечают известным закономерностям, а именно, чем более электроотрицательным является присоединенный к sp^3 -углероду фрагмент, тем в более слабом поле наблюдаются сигналы. Так, в ряду О-, N-, S, C- и P-аддуктов (табл. 7), химические сдвиги Csp^3 -Н для О-аддуктов наблюдаются в самом слабом поле, а в случае P-аддуктов – в наиболее сильном, что отвечает изменению электроотрицательностей в ряду: O>N>S≈C≥P.

3. Трансформации о^Н-аддуктов 5-(гет)арил-2,3-дициано-1-этилпиразиния

3.1. Окисление О- и С-аддуктов

В результате реакций пиразиниевых солей **2а-d** с нуклеофилами образуются σ^{H} аддукты, которые устойчивы при нормальных условиях по отношению к кислороду воздуха. В более жестких условиях при кипячении С-аддуктов **8-10** в *орто*-ксилоле в присутствии 2,3-дихлор-5,6-дициано-1,4-бензохинона (DDQ) в зависимости от заместителя в положении С(6) наблюдается декватернизация и отщепление С-нуклеофильного остатка. Так, при окислении С-аддуктов **8a** и **9b**, несущих в положении С(6) остаток 1,3-дикарбонильного соединения, происходит декватернизация с образованием исходных 5-(гет)арил-2,3-дицианоприазинов **1а,b**.

Продукт декватернизации получен также и при попытках мягкого окисления соединения 8а реактивом Барлуэнга – *бис*(пиридин)йодоний тетрафторборатом 24.

При действии реактивом Барлуэнгана О-аддукт **4a** образуется пиразинон **25**, что происходит в результате отщепления гидроксигруппы и последующего замещения нитрильной группы при C(2).

3.2. Неокислительные трансформации С- и О-аддуктов

3.2.1. Реакции О-аддуктов с СН-активными соединениями

Алкоскигруппа в О-аддуктах является лабильной и может быть заменена на остаток 1,3-дикарбонильного соединения. Так, в реакциях аддуктов **3a** и **4a** с ацетилацетоном или этиловым эфиром ацетоуксусной кислоты в присутствии уксусной кислоты, как катализатора, происходит образование С-аддуктов **8a** и **9a**. По-видимому, имеет место диссоциативный механизм замещения алкоксигуппы, то есть реакция протекает через образование промежуточной пиразиниевой соли с последующей атакой нуклеофилом атома углерода C(6). В пользу диссоциативного, а не согласованного (например, $S_N 2$) механизма свидетельствует тот факт, что данная реакция с CH-активными соединениями идет только в кислой среде и не идет в основной, например, в присутствии триэтиламина.

3.2.2. Реакции С-аддуктов с N,N- и N,О-динуклеофлами

Установлено, что 1,2-дигидропиразины **8а,с** и **9а,с,** несущие реакционноспособные карбонильные группы, вступают в циклизации с гидразингидратом при кипячении в этаноле с образованием пиразино[2,3-*c*]пиридазинов **26а,с** и **27а,с**, причем в случае ацетилацетонового производного наблюдается отщепление одной ацетильной группы, тогда как в реакциях с соединениями **9а,с** этого не происходит. Кроме того, в результате реакции соединений **8а,с** с гидразином образуются ожидаемые пиразолы **27а,с**. Строение соединений **26а** и **27а** установлено на основе данных РСА (рис. 12 и 13).

Рис. 12. Геометрия молекулы 26а

Рис. 13. Геометрия молекулы 27а

Реакции соединений **8а,с** с гидроксиламином протекают сложнее и ведут к производным 3а,3b,4,7,7а,8а-гексагидро-1,8-диокса-2,4,7-триазациклопента[*a*]индена **29а,с**, что однозначно доказано методом РСА на примере соединения **29а** (рис. 14) и подтверждено данными масс-спектрометрии. Вместе с тем, спектры ЯМР ¹Н характеризуются сложным набором мультиплетов, отнесение которых к определённым функциональным группам затруднено. Сложность интерпретации спектров ЯМР ¹Н может быть объяснена наличием в растворе кольчато-цепной таутомерии, а также образованием смеси диастереомеров. Предполагаемый химизм реакции включает в себя образование на первой стадии дигидрооксазольного производного и последующее замыкание тетрагидрофуранового цикла в результате атаки по C(5) дигидропиразинового кольца.

Попытки вовлечь в циклизации с гидразингидратом и гидроксиламином Р-аддукты **19а,с** и **20а,с** оказались безуспешными так как в ходе этих реакций были выделены исходные соединения **19** и **20** с выходом 90-95%.

При кипячении **8а,с** в спирте с 1,2-этилендиамином **30а** или 1,2-пропилендиамином **30b** наблюдалось отщепление одной ацетильной группы с образованием 5-(гет)арил-6-(2-оксопропил)-1-этил-1,6-дигидропиразин-2,3-дикарбонитрилов **31а,с**, структура которых была исследована методом РСА на примере соединения **31a** (рис. 15). Других продуктов взаимодействия выделить не удалось.

Рис. 15. Геометрия молекулы 31а

3.2.3. Реакции С- и О-аддуктов с арилацетиленами

3.2.3.1. Синтез пирроло[1,2-а]пиразинов и тетразафенантренов

Показано, что σ^{H} -аддукты, получаемые при взаимодействии солей 5-(гет)арил-2,3дициано-1-этилпиразиния с О- (вода и спирты) и С-нуклеофилами (еноляты дикарбонильных соединений), могут вступать в реакцию с терминальными арилацетиленами с образованием пирроло[1,2-*a*]пиразинов.

Так, при кипячении дигидропиразинов **4a**, **8a,c,d** и **9a** в *орто*-ксилоле в присутствии фенил- или 4-бромфенилацетилена образуются 8-фенил- или 8-(4-бромфенил)-3-(гет)арил-6метилпирроло[1,2-*a*]пиразин-1-карбонитрилы **32a-е** (табл. 8). Строение соединений **32a-е** установлено на основании данных ЯМР ¹H, ¹³C и PCA, выполненного для кристаллов 3-(3бензо[*b*]тиенил)-8-фенил-6-метилпирроло[1,2-*a*]пиразин-1-карбонитрила **32с** (рис. 16).

Следует отметить, что в реакции с гидроксиаддуктом **4a** выход продукта циклизации резко падает, а процесс осмоления усиливается, что, по-видимому, можно объяснить меньшей прочностью связи С-О в соединении **4a** в сравнении с С-аддуктами **8a,c,d** и **9a**. Попытки вовлечь в реакции с арилацетиленами Р-аддукты **19a,c** и **20a,c** оказались безуспешными, из реакционной массы были регенерированы исходные соединения **19** и **20**.

Рис. 16. Геометрия молекулы 32с

Табл. 8. Выходы соединений 32а-е

Реакция	Продукт	Выход, %
8а + фенилацетилен	32a	46
8с + фенилацетилен	32b	54
8d + фенилацетилен	32c	17
8а + 4-бромфенилацетилен	32d	44
8с + 4-бромфенилацетилен	32e	40
9 + фенилацетилен	32a / 9a	14 / 44
4а + фенилацетилен	32a	15

С целью изучения химизма данной реакции исследована термическая устойчивость Ои С-моноаддуктов **4a**, **8a,c,d** и **9a**. Установлено, что при кипячении **8a,c** и **4a** в *орто*-ксилоле в течение 2 часов образуются 4,5-ди(гет)арил-4а,4b,9,10-тетрагидро-3,6,8a,10a-тетраазафенантрен-1,2,7,8-тетракарбонитрилы **33a,b** в виде смеси двух диастереомеров (табл. 9).

Исходное	Пролит	Выход,	Соотношение диастереомеров А : В		
соединение	продукт	%	В продукте	В реакционной смеси	
8a	33a	51	5:1	3:1	
8c	33b	50	4:1	3.5 : 1	
4 a	33a	73	5:1	2.5 : 1	

Таблица 9. Выходы соединений 33а, b и соотношения их диастереомеров

Строение и относительные конфигурации асимметрических центров в соединениях **33а,b** доказаны на основании данных спектров ЯМР ¹H, ¹³C, включая 2D эксперименты ¹H-¹H COSY, ¹H-¹³C HSQC и ¹H-¹³C HMBC. Спектральные характеристики пространственных изомеров заметно различаются (рис. 17). В спектрах ¹H, ¹³C преобладающего изомера, имеющего химически эквивалентные углероды C(4a) и C(4b) и C(9), C(10), присутствует один набор сигналов и не наблюдается спин-спинового взаимодействия между парами вицинально расположенных протонов H(4a)-H(4b) и H(9)-H(10). Для минорного изомера характерен двойной набор сигналов в спектрах ЯМР ¹H, ¹³C, а также наличие спин-спинового взаимодействия с константами ³J_{H4a,H4b} ≈ 8.7 и ³J_{H9,H10} = 3.2 Гц, соответствующими *ах-ах* и *ах-еq* взаимодействия виям протонов центрального пиперазинового цикла.

Рис. 17. Фрагменты спектра ЯМР 1 Н (400 МГц) соединения **33а**:

а) область сигналов протонов H(4a), H(4b); b) область сигналов протонов H(9), H(10).

Анализ спектральных данных позволил провести конфигурационное отнесение изомеров соединений **33а,b**. Мажорный изомер **33А** представляет собой одну из хиральных форм трициклической системы, тогда как минорный изомер **33В** – одну из *мезо*-форм.

Поскольку процессы димеризации обычно связаны с участием радикальных частиц, в работе была предпринята попытка их обнаружения в реакционных смесях методом ЭПР. Действительно, при нагревании аддукта 8с в орто-ксилоле образуются радикальные частицы и, возможно, бирадикалы (см. 3.2.3.2. ЭПР исследование реакций С-аддуктов с арилацетиленами). Образование радикалов зафиксировано и в реакциях с фенилацетиленом на примере реакции соединения 8с. Однако сделать однозначный вывод, лежат ли данные радикалы на координате реакции образования пирроло[1,2-a] пиразинов на основании имеющихся данных невозможно. Поэтому нами предложен следующий химизм протекания данных реакций: при нагревании С- и О-аддктов в орто-ксилоле наблюдается их диссоциация, ведущая к бирадикалам 34, которые могут находиться в равновесии с соответствующими илидами пиразиниевых солей через азиридиновый интермедиат. При отсутствии в реакционной смеси других соединений происходит рекомбинация бирадикалов с образованием производных тетраазафенантрена 33а, b. В реакции с арилацетиленом может участвовать как бирадикал, так и соответствующий илид, дающий продукты 1,3-диполярного циклоприсоединения с последующей ароматизацией циклоаддуктов за счет отщепления молекулы синильной кислоты и образованием пирроло[1,2-а]пиразинов **32а-е**.

3.2.3.2. ЭПР-исследование реакций С-аддуктов с арилацетиленами

На основе ЭПР исследования были предложены следующие структуры промежуточных бирадиклов: в отсутствии в реакционной среде фенилацетилена – **34**, в присутствии – **35**.

Выражаю большую благодарность сотрудникам ИФМ УрО РАН к.ф.-м.н., с.н.с. Швачко Юрию Николаевичу и м.н.с. Стариченко Денису Владимировичу за проведение ЭПР-исследования.

На рисунке 18 представлен разрешенный спектр реакции соединения 8с с фенилацетиленом при 373 К и его первообразная. В спектре присутствуют 9 линий, каждая из которых расщеплена с δ = 1.5 Гс. Соотношение интенсивностей линий составляет 1:3:4:5:5:5:4:3:1, а константы сверхтонкого расщепления (СТР) составляют $a^1 \approx a^2 \approx 1.8$ Гс и $a^3 \approx a^4 \approx a^5 \approx a^6 = 2.2$ Гс.

Рис. 18. Спектр ЭПР реакционной массы соединения **8с** с фенилацетиленом при 373 К и его первообразная

Для исходного соединения **8c** и его раствора в *орто*-ксилоле без фенилацетилена сигналов ЭПР не наблюдается. Начиная с 363 К и при дальнейшем нагреве возникает интенсивный сигнал со сверхтонкой структурой (СТС) и мультиплетностью 9. Максимальная амплитуда и разрешение наблюдается при T= 400 К. На рисунке 19 представлен соответствующий спектр и его первообразная.

Рис. 19. Спектр ЭПР реакции димеризации соединения 8с при 400 К и его первообразная Соотношение интенсивностей СТС компонент составляет 1:3:4:5:5:5:4:3:1. Константы сверхтонкого расщепления составляют а¹≈а²= 1.8 Гс и а³≈а⁴= 2.4 Гс, а⁵≈а⁶= 2.8 Гс.

Изучена динамика образования и рекомбинации бирадикалов типа **34** и **35**, измерены константы СТР, сделаны оценки обменного параметра *J/a*≥2.

4. Исследование биологической активности

В рамках работы по поиску биологически активных веществ в Институте общей генетики РАН (г. Москва) осуществлена первичная оценка активности полученных соединений (**2c**, **4a**, **8a,c**, **9a,c**, **10a,c**, **26c**, **27a,c**, **28c** и **29c**) в отношении ряда биомишеней:

- прескрининг потенциальных ингибиторов серин-треониновых протеинкиназ (СТПК);

- прескрининг веществ цитотоксичных в отношении раковых клеток;

- прескрининг потенциальных ингибиторов множественной лекарственной устойчивости бактерий (МЛУ);

- прескрининг потенциальных ингибиторов F1F0 ATP синтаз.

Среди тестируемых соединений выявлено три соединения (**10с**, **28с** и **29с**), являющиеся ингибиторами эукариотических СТПКэ.

Выводы:

1. Развиты представления о пространственном строении и свойствах σ^{H} -аддуктов, получаемых на основе тетрафторборатов 5-(гет)арил-2,3-дициано-1-этилпиразиния. Показано, что данные соли образуют сравнительно стабильные σ^{H} -аддукты с О-, С- и Р-нуклеофилами, исследованы стереохимические особенности их образования. Впервые получены данные РСА для моноаддуктов пиразиниевых солей с О-, С- и Р-нуклеофилами; установлено, что химические сдвиги углерода и протона связи <u>Csp³(H)</u>–элемент в σ^{H} -аддуктах меняются от слабого поля к сильному в следующей последовательности: O>N>S≈C≥P.

 На основе изучения химических свойств σ^H-аддуктов солей 5-(гет)арил-2,3-дициано-1-этилпиразиния с нуклеофилами:

а) показана диссоциативная схема замещения алкоксигруппы в О-аддуктах на остаток 1,3-дикарбонильного соединения в кислой среде;

б) реализован новый подход к синтезу пирроло[1,2-*a*]пиразинов, основанный на циклизации С- и О-аддуктов с терминальными арилацетиленами; исследован предполагаемый химизм данной реакции;

в) обнаружены необычные термические превращения σ^H-аддуктов, ведущие к производным тетраазафенантрена;

г) выявлены закономерности реакций С-аддуктов, несущих в 6-положении остаток 1,3дикарбонильного соединения, с N,N'- и N,O-динуклеофилами; обсуждены вероятные схемы превращений, ведущих к полициклическим системам; д) показано, что Р-аддукты 5-(гет)арил-2,3-дициано-1-этилпиразиния более стабильны по сравнению с С- и О-аддуктами и не склонны к дальнейшим химическим трансформациям.

3. Обнаружена реакция С-С сочетания радикальных интермедиатов, генерируемых из солей 5-R-2,3-дициано-1-этилпиразиния с непредельными соединениями.

4. Выявлены ингибиторы эукариотических протеинкиназ в ряду синтезированных дигидропиразинов, перспективные для дальнейшего исследования.

Основное содержание работы изложено в следующих публикациях:

1. Rusinov G.L., Slepukhin P.A., Charushin V.N., Dyachenko O.A., Kazheva O.N., Chekhlov A.N., Verbitsky E.V., Kodess M.I., Chupakhin O.N. Chemistry of O- and C-adducts derived from 1,4diazinium salts: use of tetrahydropyrazines in the synthesis of condensed systems // *Mendeleev Commun.*, **2006**, Vol. 16, N 1, P. 26-29.

2. Вербицкий Е.В., Русинов Г.Л., Слепухин П.А., Матерн А.И., Швачко Ю.Н., Стариченко Д.В., Чарушин В.Н., Чупахин О.Н. Первый случай прямого введения в азаароматические субстраты нуклеофила, несущего стабильный радикалальный центр // Известия Академии наук. Серия химическая, **2006**, №11, С. 2035-2037.

3. Вербицкий Е.В., Русинов Г.Л., Слепухин П.А., Чупахин О.Н., Чарушин В.Н. Химия О- и С-σ^H-аддуктов солей 5-арил-2,3-дициано-1-этилпиразиния: синтез и реакции // Сб. статей «Достижения в органическом синтезе», Екатеринбург: УрО РАН, **2007**, С. 21-30.

4. Вербицкий Е.В., Русинов Г.Л., Слепухин П.А., Гришаков А.Н., Ежикова М.А., Кодесс М.И., Чарушин В.Н. Стереохимические особенности присоединения О- и С-нуклеофилов к солям 5-(гет)арил-2,3-дициано-1-этилпиразиния // Журнал органической химии, **2008**, Т. 44, №2, С. 305-312.

5. Вербицкий Е.В., Слепухин П.А., Русинов Г.Л., Чарушин В.Н. Трансформации С-аддуктов 1,4-диазиниевых солей с дикарбонильными соединениями в полициклические системы // Известия Академии наук. Серия химическая, **2008**, №3, С. 639-643.

Тезисы докладов на конференциях:

1. Слепухин П.А., Русинов Г.Л., Вербицкий Е.В., Чарушин В.Н. Тетрагидропиразинилнитрометан как 1,3-С,N-динуклеофил в реакциях с солями хиноксалиния. // *Тезисы докладов VIII Молодежной научной школы-конференции по органической химии*, Казань, **2005**, с. 250.

2. Вербицкий Е.В., Русинов Г.Л., Слепухин П.А., Чарушин В.Н., Чупахин О.Н. Синтез и свойства тетрафторборатов 5-арил-2,3-дициано-1-этилпиразиния // International Symposium on Advanced Science in Organic Chemistry (ASOC-2006), Sudak, Crimea, **2006**, p. 96.

3. Вербицкий Е.В., Русинов Г.Л., Березин М.В., Слепухин П.А., Матерн А.И., Швачко Ю.Н., Стариченко Д.В., Чарушин В.Н., Чупахин О.Н. Прямое сочетание диазинов с остатками нит-

роксильных радикалов // Тезисы докладов IX Научной школы-конференции по органической химии, Москва, **2006**, с. 103.

4. Ганебных И.Н., Вербицкий Е.В., Русинов Г.Л., Чарушин В.Н., Чупахин О.Н. Анализ 1,2дигидропиразинов LC/MS-методом // 3-я Международная Конференция-школа «Массспектрометрия в химической физике, биофизике и экологии», Звенигород, Россия, 2007, с. 177-178.

5. Вербицкий Е.В., Слепухин П.А., Русинов Г.Л., Чарушин В.Н. 1,4-Диазины в синтезе новых полициклических систем // XVIII Менделеевский съезд по общей и прикладной химии, Москва, **2007**, с. 470.

6. Вербицкий Е.В., Чарушин В.Н., Русинов Г.Л., Вигоров А.Ю., Гришаков А.Н., Ганебных И.Н., Краснов В.П. Модификация солей 5-(гет)арил-2,3-дициано-1-этилпиразиния производными 4-аминоглутаминовой кислоты // *Тезисы докладов X Молодежной конференции по ор*ганической химии, Уфа, **2007**, с. 124.

7. Вербицкий Е.В., Слепухин П.А., Русинов Г.Л., Чупахин О.Н., Чарушин В.Н. Реакции С- и *О*-аддуктов 1-этил-1,4-диазиниевых солей с алкинами – одностадийный путь к производным пирроло[1,2-а]пиразинов // Тезисы докладов международной конференции по органической химии «Химия соединений с кратными углерод-углеродными связями», Санкт-Петербург, **2008**, с. 86.